Демонстрационный вариант теста по химии 2016 год.

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов.

В заданиях, где нужно установить соответствие между двумя столбцами, ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1В4Г2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1.	В периодической си	стеме в одном п	ериоде с бромом	находится	элемент:
	1) кремний	2) кальций	3) хлор	4) иод	

2. Электронная конфигурация атома в основном состоянии $1s^22s^22p^5$. Число протонов в атоме равно:

3. Анион серы S^{2-} содержит столько же электронов, сколько и атом:

4. Согласно положению в периодической системе в порядке возрастания радиуса атома химические элементы расположены в ряду:

5. Ковалентная, ионная и металлическая связь соответственно имеется в веществах ряда:

1)
$$O_3$$
, P_2O_5 , Fe 2) CO_2 , SiC , Hg 3) B_2O_3 , NaF , Li 4) Si , SF_6 , KBr

6. Установите соответствие между названием вещества и типом его кристаллической решетки.

НАЗВАНИЕ ВЕЩЕСТВА ТИП КРИСТАЛЛИЧЕСКОЙ РЕШЁТКИ

1 — гелий а — атомная
2 — бор б — металлическая
3 — хлорид калия в — ионная
г — молекулярная

1) 1в, 2а, 3б 2) 1г, 2а, 3в 3) 1г, 2в, 3б 4) 1а, 2г, 3в

7. Степень окисления –1 имеют атомы одного из элементов в соединении:

1)
$$N_2O$$
 2) N_2H_4 3) NaO_2 4) BaH_2

8. Масса вещества количеством 3 моль составляет 102 г. Его молярная масса (г/моль) равна:

Как кислотными, так и основными свойствами обладает каждый из оксидов ряда:

1)
$$B_2O_3$$
, CaO 2) NO_1N_2O 3) ZnO_1BeO 4) SiO_2 , SO_2

10. Гидроксид натрия в разбавленном водном растворе реагирует (20 °C) со всеми веществами ряда:

1) $HCl, Br_2, Fe(OH)_2$	2) HI , $Al(OH)_3$, $KHCO_3$	3) CO ₂ , FeCl ₃ , Hg
	4) SiO ₂ , FeO, H ₂ S	

- **11.** Водный раствор метилоранжа становится красным при пропускании в него газов:
 - a) NH₃
 - б) HCl
 - в) NO₂
 - г) N₂O
- 1) б, в 2) а, г 3) а, б 4) в, г
- 12. Кислая соль образуется при взаимодействии растворов, содержащих вешества:
 - 1) 1 моль оксида углерода(IV) и 3 моль гидроксида калия;
 - 2) 2 моль соляной кислоты и 1 моль гидроксида магния;
 - 3) 1 моль оксида серы(IV) и 1 моль гидроксида кальция
 - 4) 1 моль фосфорной кислоты и 2 моль гидроксида натрия.
- 13. Число веществ из предложенных алмаз, аммиачная селитра, вода, метан, питьевая сода, целлюлоза, содержащих химический элемент водород, равно:
 - 1) 5 2) 2 3) 3 4) 4
- **14.** С помощью прибора, указанного на рисунке, методом вытеснения воды НЕВОЗМОЖНО собрать газ:

- 1) метан 2) оксид азота(II) 3) оксид углерода(II) 4) иодоводород
- 15. Для кислорода и озона совпадает:
 - 1) число электронов в молекуле
- 2) качественный состав
- 3) относительная плотность по водороду
- 4) температура кипения
- 16. Установите соответствие между реагентами и суммой коэффициентов перед ними в уравнении реакции, протекающей по схеме.

17. Установите соответствие между формулой вещества и его характеристикой.

ФОРМУЛА

1 - CO

2 — NaHCO₃

 $3 - CaCO_3$

4 — CO₂

ХАРАКТЕРИСТИКА ВЕЩЕСТВА

- а является основным компонентом мрамора
- б применяется в качестве сухого льда для хранения скоропортящихся продуктов
- в служит восстановителем металлов в металлургии
- г используется в пищевой промышленности
- д является основным компонентом гипса
- 1) 1в, 2г, 3а, 4б
- 2) 1г, 2д, 3б, 4а
- 3) 1г, 2в, 3д, 4б
- 4) 1в, 2б, 3д, 4г

18. Для получения стекла состава ${\rm Na_2OCaO6SiO_2}$ используют сырье, содержащее все вещества ряда:

1) Na
$$_2$$
O, CaO, SiO $_2$ 2) Na $_2$ CO $_3$, CaCO $_3$, SiO $_2$ 3) NaOH, CaCO $_3$, Na $_2$ SiO $_3$ 4) Na $_2$ CO $_3$, CaO, K $_2$ SiO $_3$

19. В четыре стакана, наполненные водными растворами солей, поместили пластинку из железа. Масса пластинки увеличилась в растворах:

- a) $Cr(NO_3)_3$
- б) CuSO₄
- в) $Ni(NO_3)_2$
- г) ZnSO₄

- **20.** Массовая доля металла в оксиде состава MeO равна 71,4 %. Выберите утверждения, характеризующие металл:
 - а) НЕ восстанавливается водородом из оксида
 - б) используется в изготовлении ювелирных украшений
 - в) реагирует с водой (20 °C)
 - г) в соединениях имеет переменную валентность

21. Гидроксид алюминия является конечным продуктом схемы превращений:

a)
$$Al(NO_3)_3 \xrightarrow{t} \dots \xrightarrow{KOH(TB), t} \rightarrow$$

b) $\xrightarrow{HNO_3(pa36)} \dots \xrightarrow{KOH(p-p, u36)} \rightarrow$
B) $NaAlO_2 (1 моль) \xrightarrow{HBr(p-p, u36)} \dots \xrightarrow{NH_3(p-p)} \rightarrow$
г) $KAlO_2 \xrightarrow{HCl(p-p, u36)} \dots \xrightarrow{NH_3(p-p)} \rightarrow$
1) а, в 2) а, б, в 3) в, г 4) б, г

22. В закрытом сосуде постоянного объема протекает обратимая химическая реакция:

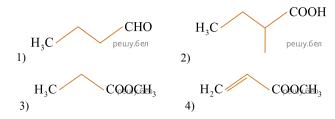
$$N_2(\Gamma) + 3H_2(\Gamma) \rightleftharpoons 2NH_3(\Gamma) + Q.$$

Повышение температуры в сосуде приводит к:

- а) смещению равновесия в сторону исходных веществ;
- б) увеличению скорости обратной реакции;
- в) уменьшению скорости обратной реакции;
- г) повышению давления.

23. При разложении карбоната кальция количеством 2 моль расходуется 314 кДж теплоты. Количество теплоты (кДж), затраченное на разложение известняка массой 1 кг, содержащего 8 % инертных примесей, равно:

- **24.** Литий количеством 0.5 моль растворили в воде массой 50 г. Для полученного раствора справедливы утверждения:
 - а) масса составляет 53 г
 - б) содержит ионы гидроксония
 - в) число анионов равно числу катионов
 - г) проводит электрический ток


25. Дано предложение с пропусками:

Водный раствор сероводорода имеет концентрацию (H^+) ____, чем концентрацию (ОН-), значение рН , окрашивает лакмус в цвет, содержит больше -анионов, чем -анионов.

Выберите ряд, в котором последовательно указаны недостающие фрагменты предложения:

- 1) больше, равно 7, фиолетовый, S^{2-}, HS^{-}
- 2) меньше, больше 7, красный, S^{2-} , HS^{-}
- 3) больше, меньше 7, красный, HS^-, S^{2-}
- 4) меньше, меньше 7, желтый, HS^-, S^{2-}
- 26. Количество молекул в порции белого фосфора (Р4) равно 0,3 моль. В реакции данной порции вещества с избытком магния число электронов, переходящих от магния к фосфору, равно:
 - 1) $2.17 \cdot 10^{24}$

- 2) $1.81 \cdot 10^{23}$ 3) $3.61 \cdot 10^{24}$ 4) $5.42 \cdot 10^{23}$
- 27. Изомером бутановой кислоты является вещество, формула которого:

- **28.** Соединения с общей формулой $C_n H_{2n+2}$ НЕ вступают в реакции:
- 1) замещения 2) отщепления 3) окисления
- 4) поликонденсации
- 29. Гомологом пропена является:
 - 1) пропин
- 2) пропадиен
- 3) этилен
- 4) ацетилен

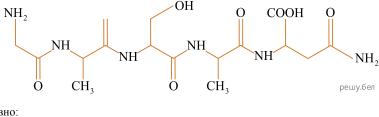
30. В схеме превращений:

$${
m CH_4} \xrightarrow{~1500~^{\circ}{
m C}} {
m X}~(3~{
m моль}) \xrightarrow{~{
m C}~{
m akt},~450\text{-}500~^{\circ}{
m C}}$$
 бензол

органическим веществом Х является:

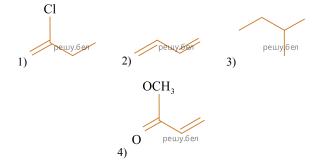
- 1) этан
- 2) этин
- 3) этен
- 4) пропин
- 31. Выберите утверждения, характеризующие ароматические углеводороды:
- а) все атомные ядра в молекуле бензола лежат в одной плоскости
- б) некоторые гомологи бензола имеют относительную молекулярную массу 126
 - в) массовая доля углерода в бензоле такая же, как и в ацетилене
- г) коэффициенты перед бензолом и кислородом в уравнении реакции полного сгорания равны 1 и 15 соответственно

- **32.** Число веществ ИЗ предложенных CH₃COOH, C₂H₆, K, K₂CO₃ (p-p), Cu(OH)₂, HCl, — которые реагируют с этиленгликолем:
 - 1)5 2) 2 3)3 4) 4
 - 33. Ацетальдегид является продуктом реакции, схема которой:


3. Ацетальдегид является продуктом реакции, схема которой:
$$1) \, \text{CH}_2 = \text{CH}_2 + \text{O}_2 \xrightarrow{\qquad \qquad Pd^{2+}, \text{Cu}^{2+}/\text{H}_2\text{O}} \to \\ 2) \, \text{CH} \equiv \text{CH} + \text{O}_2 \xrightarrow{\qquad \qquad } \qquad 3) \, \text{CH}_2 = \text{CH}_2 + \text{H}_2\text{O} \xrightarrow{\qquad \qquad t, \ \text{H}_2\text{SO}_4} \to \\ 4) \, \text{CH} \equiv \text{CH} + \text{H}_2 \xrightarrow{\qquad \qquad \text{KaT}, \ t} \to \\ \end{cases}$$

- 34. Два органических вещества А и Б имеют молекулярную формулу $C_3H_6O_2$. А в реакции с гидрокарбонатом натрия образует газ (н. у.) без цвета и запаха. Б НЕ реагирует с гидрокарбонатами, но при нагревании с водным раствором гидроксида калия образует соль и спирт. Выберите названия веществ А и Б соответственно
 - 1) пропионовая кислота и этилацетат
 - 2) муравьиная кислота и этилметаноат
 - 3) пропановая кислота и метилэтаноат
 - 4) уксусная кислота и этилформиат
 - 35. Органическое вещество X_2 схемы превращений:

крахмал
$$\longrightarrow$$
 $H_2O(изб)/H_2SO_4 \longrightarrow X_1 \longrightarrow X_2$


относится к классу соединений:

- 1) альдегиды
- 2) спирты
- 3) кислоты
- 4) сложные эфиры
- 36. В реакции бутанамина-1 с избытком бромоводородной кислоты при 90%м выходе продукта образовалась соль массой 499 г. Масса (г) исходного амина равна:
 - 1) 213
- 2) 237
- 3) 263
- 4) 370
- 37. Число пептидных связей в составе полипептида

равно:

- 1)5 2) 2 3)3 4) 4
- 38. В реакции полимеризации в качестве мономера НЕ может быть использовано соединение, формула которого:

39. Дан перечень органических соединений: анилин, бензол, глицерин, декан, метан, метилметаноат, пропандиол-1,2, толуол, уксусный альдегид, формальдегид, этилформиат, этандиол-1,2. Определите число гомологических рядов, к которым принадлежат данные соединения. Ответ запишите в виде числа, например: 3.

- 40. Выберите утверждения, характеризующие фенол.
- 1) молекулярная формула С₆Н₆О
- 2) жидкое вещество с характерным запахом (20 °C)
- 3) образуется при пропускании углекислого газа через водный раствор вещества, формула которого

- 4) смешивается с водой в любых отношениях (20 °C)
- 5) реагирует с бромной водой (20 °C)
- 6) в отличие от этанола реагирует с водными растворами щелочей

Ответ запишите в виде последовательности цифр в порядке возрастания, например: 2346.

41. Для получения синтетического волокна лавсан провели реакцию поликонденсации между терефталевой кислотой количеством 2,25 моль и этиленгликолем. Схема реакции:

$$nHOOC - - - C_6H_4 - - -COOH + nHO - - - (CH_2)_2 - - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - O - - - (CH_2)_2 - - OH \longrightarrow HO - - - (CO - - - C_6H_4 - - - CO - - - OH \longrightarrow HO - - - (CO - - C_6H_4 - - - CO - - - OH)_2 - - OH \longrightarrow HO - - - (CO - - C_6H_4 - - - CO - - C_6H_4 - - - CO - - OH)_2 - - O$$

Среднее число остатков этиленгликоля в молекуле образовавшегося высокомолекулярного соединения равно 20. Рассчитайте массу (г) образовавшейся воды.

42. Найдите сумму молярных масс (г/моль) органических веществ X_2 молекулярного строения и X_5 немолекулярного строения, образующихся в результате превращений, протекающих по схеме:

3-бромпропен
$$\xrightarrow{\operatorname{Br}_2/\operatorname{CCl}_4}$$
 X_1 $\xrightarrow{\operatorname{KOH}(\mathsf{из6})/\operatorname{H}_2\operatorname{O},\ t}$ X_2 $\xrightarrow{\operatorname{C}_{17}\operatorname{H}_{33}\operatorname{COOH}(\mathsf{из6})/\operatorname{H}^+}$ $\xrightarrow{\operatorname{NaOH}(\mathsf{из6})/\operatorname{H}_2\operatorname{O}}$ X_5

43. Найдите сумму молярных масс (г/моль) простого вещества Б и калийсодержащего вещества Д, образовавшихся в результате превращений, протекающих по схеме (В имеет молекулярное строение):

$$CuS \xrightarrow{\quad O_2, \ t \quad} A \xrightarrow{\quad CH_3OH, \ t \quad} B \xrightarrow{\quad H_2SO_4(\kappa o H \mathfrak{I}) \quad} B \xrightarrow{\quad KOH(pas6, \ us6) \quad} \Gamma \xrightarrow{\quad SO_2 \quad} \mathcal{A}.$$

44. Для получения веществ по схеме превращений

$$ZnI_2 \longrightarrow ZnCl_2 \longrightarrow Zn(NO_3)_2 \longrightarrow Mg(NO_3)_2 \longrightarrow Mg(OH)_2$$

выберите реагенты из предложенных:

- 1) MgCl₂
- 2) HNO₃
- 3) Mg
- 4) NH₃ (конц p-p)
- 5) AgNO₃
- 6) Cl₂
- 7) H₂O

Ответ запишите цифрами в порядке следования превращений, например: 1354.

- **45.** При обжиге на воздухе минерала **A**, состоящего из двух химических элементов, образовались оксиды **Б** и **B**. Массовые доли химических элементов в **Б** равны. **Б** является газообразным веществом (н. у.) с резким характерным запахом. Его водный раствор изменяет окраску метилоранжа на красную. В состав формульной единицы **B** входят три атома металла Γ , причем у одного из них степень окисления +2, у двух других +3. **B** имеет красно-коричневый цвет, твердое агрегатное состояние (н. у.). Массовая доля металла в оксиде **B** равна 72,4 %. По распространенности в земной коре элемент Γ занимает второе место среди металлов. Найдите сумму молярных масс (г/моль) веществ **Б** и **B**.
- **46.** В четырех пронумерованных пробирках находятся разбавленные водные растворы неорганических веществ. О них известно следующее:
 - вещества из пробирок 1 и 2 нейтрализуют друг друга;
 - при смешивании содержимого пробирок 1 и 3 образуется белый осадок;
- при взаимодействии содержимого пробирок 2 и 4 выделяется газ (н. у.) с характерным запахом.

Установите соответствие между названием неорганического вещества и номером пробирки, в которой находится раствор данного вещества.

НАЗВАНИЕ ВЕЩЕСТВА	№ ПРОБИРКИ
А) нитрат бария	1
Б) гидроксид калия	2
В) хлорид аммония	3
Г) серная кислота	4

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A1Б3В4Г2.

- **47.** Загрязненный образец соли $KClO_3$ массой 22,28 г нагрели в присутствии катализатора до постоянной массы. При этом соль разложилась на хлорид калия и кислород, а масса образца уменьшилась на 7,68 г. Известно, что при нагревании не образовалось никаких посторонних веществ, а примеси не разлагались и не улетучивались. Вычислите массовую долю (%) $KClO_3$ в исходном образце.
- **48.** Латунь это сплав меди с цинком. Образец латуни массой 6,5 г поместили в разбавленную соляную кислоту объемом 1 дм³. В результате полного протекания реакции рН раствора повысился с 1 до 2. Определите массовую долю (%) меди в образце латуни. Объем раствора считать постоянным.
- **49.** К некоторому объему газообразного алкана добавили в десять раз больший объем смеси N_2 и O_2 , плотность которой (н. у.) равна 1,357 г/дм³. После этого смесь взорвали в закрытом сосуде. Алкан сгорел полностью, а содержание азота в конечной газовой смеси (н. у.) составило 44,5 % по объему. Определите число атомов в молекуле алкана.
- **50.** Под стеклянным колпаком при постоянной температуре в двух открытых сосудах находятся насыщенный раствор сульфата меди(II) массой 450 г и безводный сульфат натрия массой 25 г. В результате поглощения паров воды сульфат натрия превратился в кристаллогидрат состава $Na_2SO_410H_2O$. Рассчитайте массу (г) кристаллогидрата сульфата меди(II) $CuSO_45H_2O$, который выпал при этом в осадок. Массовая доля $CuSO_4$ в насыщенном растворе при данной температуре составляет 18.5 %